85 908

v
T

AD~

-

UNCLASSIFIED

-

1-"." » I
. S (WL

B Sy W

SEZ_RITY CLASSIFICATIZY TF WIS PAGI (Wher Data Fntered)

REPORT DOCUMENTATION PAGE

READ DNSTRUCTIONS
BEFCORE TOMPLETEING FORM

(

1. REPORT MUMBLR [2. GU+T ACCESSION NO.

5.

3 RECIPIEND'S CATALOG NUMBER \|

TYPt OF REPORI & PERIDD COVERED

4 71

VAN

TLE (8no Supttie!

Ada Compiler Validation Summary Report: Rational.
200055,

HYIN
SME,

R10Q07 Series 200 Model 2

Rational
880815w1.08143

17 Aug 1988 to 17 Aup 1989

®. PERFORMING DRG. REPOR] WUMBER

and (Taruget),

e .
(Host

and

7. AUTHORs)

B. CONTRACT OR GRANT NUMBER(s)

wright-Patterson Air Force Base
Dawvrtan, 2, USA
9. PERFORMING QRGANIZATION AND ADORESS 10. PROGRAM ELEMENT PROJECY, TASK
AREA & WORK UNIT NUMEERS
Wright-"atterson ALlr Force Base
Daveoon, OHDOUSy
11. CONTRO.LING OFFICE NAME AND ADDRESS 12. REPORT DATE 7
Aca ngnt Program fice
United States Department of Defense WONSTR U7 PECES -
Washington, DC 20301-3081 : ? /
14. MONITORING AGENCY NAMI & ADDRESS(/fdifferent from Controlling Office) 15. SECURITY CLASS (ofthisreport) /
UNCLASSIFIED
#1 wWright-Patrerson Air Force Base 158, QECEASS, FICATION/DOWNGRADING
Javton, OH, USa N/A
16. DISTRIBUTION STATEMENT (of thus Report) -
Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMINT (of the abstract entered in Block 20 If different from Report)
UNCLASSIFIED D] lc
18. SUPP_EMEINTARY NOTES

18. KEYWORDS (Continue onreverse side :f necessary and dentify by block number)

1815A, Ada Joint Program Office, AJPO

Ada Programming language, Ada Compiler Validation Summary Report, Ada

Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVQO, Ada Validation Facility, AVF, ANSI/MIL-STD-

20. ABSTRAZT (Comtinue on reverse side if necessary and ident:fy by biock number)

Rational, VAX VMS, Version 2.0.45, Wright-Patterson Air Force Base, Rational R1000
Series 200 Model 20 under D_19 9 10wps (Host) to VA¥-11/750 under W 4.5

™S, Version

(Target), ACUO 1.9.
L - . —— =
DD *YU™ 1473 toivion 0F 1 NO. 65 1S UBSOLETE
1 JAN 73 S/N 0162-LF-0i4-650!

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGL (When Data Entered)

AVF Control Number: AVF-VSR-208.1188
88-05-31-RAT

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 880815W1.09143
Raticnal
VAX_VMS, Version 2.0.45
Rational R1000 Series 200 Model 20 and VAX-11/750

Completion of On-Site Testing:
17 August 1988

Prepared By: I

Ada Validation Facility o

ASD/SCEL C
Wright-Patterson AFB OH H45433-6503 o

Prepared For: f o

Ada Joint Program Office P
United States Department of Defense !

Washington DC 20301-3081 ' A,,

Ada Compiler Validation Summary Report:

Compiler Name: VAX_VMS, Version 2.0.45
Certificate Number: 880815W1.09143

Host: Target:
Rational R1000 Series 200 VAX-11/750 under
Model 20 under D_10_9_10wps VMS, Version 4.5

Testing Completed 17 August 1988 Using ACVC 1.9

This report has been reviewed and is approved.

i’ RE ;//<7‘
sl v 10 SV e

Ada Validation Facility

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

) Ya / e
/ . /
S Opy—
Ada Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

IR
Ada J#fint Program Office

Virginia L. Castor
Director

Department of Defense
Washington DC 20301

Host:

This repor

Ada Compiler Validation Summary Report:

Compiler Name: VAX_VMS, Version 2.0.U45
Certificate Number: 880815W1.09143
Target:
Rational R1000 Series 200 VAX-11/750 under
Model 20 under D_10_9_ 10wps VMS, Version 4.5

Testing Completed 17 August 1988 Using ACVC 1.9

t has been reviewed and is approved.

v Do
14/& S~ Y, /}/c’/:"’{\-—

Ada Valida
Steven P.
Technical
ASD/SCEL
Wright-Pat

tion Facility
Wilson
Director

terson AFB OH U5433-6503

Ada Valida

tion Organizati

Dr. John F. Kramer

Institute
Alexandria

for Defense Anghyses
VA 22311

1
Ada Joint

Program Office

Virginia L. Castor

Director
Department

- b

Nas:.Lub, et

of'Defense
nC 20303

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . .
1.2 USE OF THIS VALIDATION SUMMARY REPORT
1.3 REFERENCES & & v ¢ o o o o o o o s o o « o« » &
1.4 DEFINITION OF TERM e e e s e s e e s e e s s
1.5 ACVC TEST CLASSES & ¢ v v v ¢« ¢ o o o o &

CHAPTER 2 CONFIGURATION INFORMATION
2.1 CONFIGURATION TESTED v ¢ ¢ ¢ « o s ¢ o o o «
2.2 IMPLEMENTATION CHARACTERISTICS ¢« . « ¢« « « « .

CHAPTER 3 TEST INFORMATION
3.1 TEST RESULTS ¢« ¢ & ¢ o ¢ o o o o o o s o s o« »
.2 SUMMARY QOF TEST RESULTS BY CLASS . . « « .+ .«
3.3 SUMMARY OF TEST RESULTS BY CHAPTER . . « « . .
3.4 WITHDRAWN TESTS v ¢ ¢ o o o o o o ¢ o s o o
3.5 INAPPLICABLE TESTS & & ¢ ¢ o « o o ¢ o o o o »
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATI2NS
3.7 ADDITIONAL TESTING INFORMATION . . ¢« « ¢ « + .
3.7.1 Prevalidation .« ¢ « o ¢ « ¢ o o o o o o «
3.7.2 Test Method « ¢ ¢« ¢ ¢ ¢ ¢ o o « o o« s o o« &
3.7.3 Test Site v ¢ v ¢ o o ¢ o o o s s o o 8 s

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F QOF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

- —A B
!
ww o

n
N —

| I T I B I B B |
[e 3N U2 BG A NS g AV T A I o ¥ IR R

W W W W W W)

CHAPTER 1

INTRODUCTION

This Validation Summary Report '(¥SR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACY¥C). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristices of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test resuits produced
during wvalidation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the cozxpiler properly
implements 1legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

3

o atteap

t to identify any language constructs supported by the
compiler that

do not conform to the Ada Standard

. Tr artempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, 1Inz. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 17 August 198% at Rational, Santa Clara CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"™ (5
U.S.C. #552}. The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

Tne organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has nc¢ nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagen, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH Y45833-6503

1-2

Questions regarding this report or the validation test results

directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1982 and ISO 8652-1987.

INTRODUCTION

should be

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint

Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., December 1986.

L., Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVT The Ada Compiler Validation Capability. The

set of Ada

programs that tests the conformity of an Ada compiler to the

Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the

form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency reguesting validation.

AVF The Ada Validation Facility. The AVF is responsible for

conducting compiler wvalidations according to

procedures

contained in the Ada Compiler Validation Procedures and

Guidelines.

AVD The Ada Validation Organization. The AVO has oversight

authority over all AVF practices for the

purpose of

maintaining a wuniform process for validation of Ada
compilers. The AVO provides administrative and technical

1-3

INTRODUCTION

support for Ada validations to ensure consistent practices.
Compiler A processor for the Ada language. In the context of this

report, a compiler iz any lar@uage processor, including

eross-compilers, translators, and interpreters.

Faijed tes: An ACVC test for which the compiler generates a result that
demcnstrates nonconformity to the Ada Standard.

Host The ccmputer on which the compiler resides.
Inapplicable An ACVC test that wuses features of the language that a
test compller is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.
Target The computer for which a compiler generates code.
Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
dezignate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not wused to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard 1is measured using the ACVC. The ACVC
contains both 1legal and 4{1llegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and spe:cial program units are wused to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test |is
passed 1if no errars are detected at compile time and the program executes
to produze a PASSED message.

1-4

INTRODUCTION

Ciass B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Cazh Class C test 1is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
mzy refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FATLED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
nr FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests checx that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Twz library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
chezke? by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. 1If these
units are not operating correctly, then the validation is not attempted.

T™e text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and

1-5

INTRODUCTION

place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
priteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
nonsidered each time the implementation 1is validated. A test that is
inapplicable for one wvalidation 1is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ATVZ and, therefore, is not used 1in testing a compiler. The tests
Wwithdrawr a%t the time of this validation are given in Appendix D.

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was teste¢d wunder the

following configuration:

Compiler: VAX VMS, Version 2.0.45

ATVC Version: 1.9

Certificate Number: 880815W1.09143

Host Computer:

Machine:

Operating System:

Memory Size:

Target Computer:

Machine:
Operating System:

Memory Size:

Communications Netwcrk:

Rational R1007 Series 200
Model 20

D_10_9_10wps

32 Megabytes

VAX-11/750
VMS, Version 4.5

6 Megabytes

TCP/IP/ETHERNET

CONFIGURATION INFORMATION

2.2 TIMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determinas the behavior of
a compiler 1in those areas of the Ada Standard that permit implementations
to> differ. C(Class D and E tests specifically check for such implementation
differences. However, tests 1in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

(]

apacities.

Tne compiler correctly processes tests containing isop statements
neste? to 65 levels, block statements nested tc 65 levels, and
rezcursive procedures separately compiled as subunits nested to 10
levels. It correctly processes a compilation containing 72%
variables in the same declarative part. (See tests D55A032A..4 /R
tests), DS56201B, DELOOSE..G (3 tests), and D29002K.°

'miversgzl intecer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAY INT. This
implementation processes 64 bit integer calculations. (See tests
DLAQ02A, DUADO2B, DUAOOU4A, and DHAOOUB.)

. Predefined types.

This implementation supposrts the additional predefined tvpes
SHORT_INTEGER, LON3_FLOAT, and SHORT_SHORT_INTEGET in the package
STANDARD. (See tests BB6201C and B8B6A0OO1D.)

. Based literals,

An implementation is allowed to reject a based 1literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NIJMERIC_ERROR or CONSTRAINT_ERROR during execution. This
implementation rejects the test during compilation. (See test
E241014.)

Expression evaluation.
Apparently no defanlt initialization expressions for record
components are eva” :ited before any value is checkel to belong to

a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits fcr extra range. (See test
C35903A.)

Sometimes NUMERIC_ERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test CU5232A.)

Apparently NUMERIC_ERROR is raised when a 1literal operand in a
fixed-point comparison or membership test is outside the range of
the base type. (See test CU52524.)

Apparently underflow is not gradual. (See tests CU552u4A..Z.)

Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests CUG012A..Z.)

The method used for rounding to 1longest integer is apparently
round away from zero. (See tests CU6012A..Z.)

The method used for rounding to integer in static wuniversal real
expressions is apparently round away from zero. (See test
CY4ADTLAL)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX _INT components rajises NUMERIC_ERROR. (See test
C36003A.)

NUMERIC_ERROR is raised when an array type with INTEGER'LAST + 2
components is declared. (See test C36202A.)

NUMERIC_ERROR 1is raised when an array type with SYSTEM.MAX INT + 2
components is declared. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC _ERROR when the array type is declared. (See test
£52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC_ERROR when the array type is declared.
{See test C52104Y.)

e

CONFIGURATION INFORMATION

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
siize assignments. This implementation raises NUMERIZ ERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT_ERROR is raised
when checking whether the expression's subtype is coxpatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT_ERROR is raised when checking whether the

expression's subtype is compatible with the target's subtype.
(See test C52013A.)

. Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E381044.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52C13A.)

. Agzregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
{See tesis CL3207A and CH3207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test EU3212B.)

CONSTRAINT _ERROR is raised before all choices are evaluated when a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test EU43211B.)

. Representation clauses.

An implementation wmight 1legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

CONFIGURATION INFORMATION

For this implementation:

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests (C35507I1..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for derived types are not
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported. (See test A39005B.)

Length clauses with STORAGE _SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE_SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are supported. (See test A39005G.)

Length clauses with SIZE specifications for derived integer types
are not supported. (See test CB7B62A.)

Pragmas.

The pragma INLINE is not supported for procedures or functions.
(See tests LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and
CA300U4F.)

Input/output.
The package SEQUENTIAL_IO can be instantiated with unconstrained
array types and record types with discriminants without defaults.

(See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT_IO cannot be instantiated with unconstrained
array types ar ' record types with discriminants without defaults.
(See tests AE21C'H, EE2U401D, and EE2401G.)

Modes IN FILE and OUT_FILE are supported for SEQUENTIAL_IO. (See
tests CE2102D and CE2102E.)

2-5

CONFTGURATION INFORMATION

Modes IN_FILE, OUT_FILE, and INOUT_F._.E are supported for
DIRECT_IO. (See tests CE2102F, CE2102I, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL_IO and DIRECT_IO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL_IO and DIRECT_IO. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OUT_FILE mode, can be
created in OUT_FILE mode, and cannot be created irn IN_FILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text Input/output for reading only. (See tests
CE3111A..E (5 tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each external
file for sequential Input/output for reading only. (See tests
CE2107A..D (4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for direct Input/output for reading only. (See tests
CE2107F..I (5 tests), CE2110B, and CE2111H.)

An internal sequential access file and an internal direct access
file cannot be associated with a single external file for writing.
(See test CE2107E.)

Temporary sequential files and temporary direct files are given
names. Temporary files given names are deleted when they are
closed. (See tests CE2108A and CE2108C.)

. Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A and CA2003F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 345 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 285
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 76 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 108 1049 1520 15 14 Ly 2750

Inapplicable 2 2 333 2 4 2 345

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 u6 3122

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 _4_S5_6_17_8_ 9 10 11 *2 13 14

Passed 184 465 490 245 165 98 141 326 131 36 232- 3 232 2750
Inapplicabdble 20 107 184 3 1 0 2 1 6 0 0 0 21 345
Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

mA

TOTAL 206 586 677 248 166 99 145 327 137 36 23¢ u 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C c340044a C35502P A35902C
€3590L4a C35904B C35A03E C35A03R C37213EF
C372134J C37215C C37215E C37215G C37215H
c38102C cli4o024a Clis5332A Cc4s614C ATH41067
Cc85018B C87BO4B CC1311B BC3105A ADTAOA
CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt 1is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 345 tests were inapplicable for the
reasons indicated:

. C35508I..J (2 tests) and C35508M..N (2 tests) use enumeration
representation clauses for derived types. These clauses are not
supported by this compiler.

. C35702A uses SHORT_FLOAT which is not supported by this
implementation.

3-2

TEST INFORMATION

A39005G uses a record representation clause which attempts to pack
a record component that is of an array subtype, and such a record
representation clause is not supported by this compiler.

The following tests use LONG_INTEGER, which is not supported by
this compiler:

Ch45231C cus3ouc C45502C C45503C CU5504C
CL5504F c45611C C45613C C4s631C cus5632C
B52004D B55B09C C55B0O7A

C45531M, CU5531N, CU5532M, and CU5532N use fine U8-bit fixed-point
hase types which are not supported by this compiler.

cu455310, CU5531P, C(CU55320, and CU5532P use coarse Lk8-bit
fixed-point base types which are not supported by this compiler.

C4A013B uses a static value that is outside the range of the most
accurate floating-point base type. The declaration was rejected
at compile time.

D4AOOLB uses a numeric literal greater than SYSTEM.MAX_INT which
is not supported by this compiler.

D64005G uses nested procedures as subunits to a level of 17, which
exceeds the capacity of the compiler.

C86001F redefines package SYSTEM, but TEXT IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT_IO.

C87B62A uses length clauses with SIZE specifications for derived
integer types which are not supported by this compiler.

C96005B requires the range of type DURATION to be different from
those of its base type; in this implementation they are the same.

CA300HE, EA3004C, and LA300O4A wuse the INLINE pragma for
procedures, which is not supported by this compiler.

CA3004F, EA3004D, and LA300UB use the INLINE pragma for functions,
which is not supported by this compiler.

AE21014, EE2401D, and EE2421G use instantiations of package
DIRECT_IO with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected
by this compiler.

CE2105A..B (2 tests) and CE3109A attempt to create a file of mode

IN_FILE. Creation of an external file with mode IN_FILE is not
supported by this compiler.

3-3

TEST INFORMATION

. CE2127B..E (4 tests), CE2107G..I (3 tests), CE2'10B, CE2111D,
CE2111H, CE3111B..E (4 tests), and CE3114B are 1inapplicable
besause multiple internal files cannot be associated with the same
external file for both read and write and for write only. The
oroper exception is raised when multiple access is attempted.

The following 285 tests require a floating-point accuracy that
exceeds the maximum of 9 digits supported by this izmplementation:

72L113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tes%s)
£35708F..Y (20 tests) C35802F..2 (21 tests)
CU5241F..Y (20 tests) CU5321F..Y (20 tests)
~LS421F..Y (20 tests) C45521F..Z (21 tes<s)
Cd3524F..2 (21 tests) C45621F..2 (21 tests)
C45HU1F..Y (20 tests) C46012F..2 (21 tes%s)

3.5 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test 1into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test {sush as raising
one exception instead of another).

Modifications were required for 76 Class B tests.

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B22004A B22004B B22004C 3230044
B23004B B24001A B24001B B24001C B24005A
B24005B B24OOT7A B24009A B2420UA B24204B
B24204C B25002B B26001A B26002A 3260054
B28003C B290014A B2A003A B2A003B B2A003C
B2A0OT7A B32103A B33201B B33202B B33203B
B33301A B351014 B36002A B36201A B37201A
B372054 B37307E B38003A B38003B B38009A
B38009B B412014A B4 12024 B440014A BULOOUB
B4LOOUC B45205A B4B0OO2A B48002D B51001A
B51003A B51003B B53003A B554A014A 3640014
B5L400%A B670014 B67001B B67001C B6T001D
B740903A B31001H B31003B B95001A B95003A

TEST INFORMATION

B95004A B95079A B97101A BB3005A BC1303F
BC2001D BC2001E BC3003A BC3003B BC3005B
BC3013A

3.7 ADDITIONAL TESTING INFORMATION
2.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the VAX VMS compiler, Version 2.0.45, was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, anéd the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Tes.ing of the VAX_VMS compiler, Version 2.0.45, using ACVC Version 1.9 was
conducted on-site by a validation team from the AVF. The configuration
consisted of a Rational R1000 Series 200 Model 20 host operating under
D_10_9 10wps, and a VAX-11/750 target operating under VM3, Version 4.5.
The host and target computers were linked via TCP/IP/ETHERNET.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make ise of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during ¢the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were 1loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the Rational R1000 Series 200 Model 20, and all
executable tests were run on the VAX-11/750. Object files were linked on
the host computer, and executable images were transferred to the target
computer via TCP/IP/ETHERNET. Results were printed from the host computer,
with results being transferred to the host computer via TCP/IP/ETHERNET.

The compiler was tested using command scripts provided by Rational and
reviewed by the validation team. The compiler was tested using all default
switch settings except for the following:

TEST INFORMATION

Switch Effect

Create_Subprogram Specs = False Separate subprogram
specification is not
generated automatically.

Remote Directory = Denotes directory on
"sys$sysroot:[rational. the target into which
erud.acve.report " files should be

automatically downloaded.

Remote Machine = "shemp" Denotes the VAX target
machine.
Optimization Level = y Sets optimization to an

intermediate level.

Tests were compiled, linked, and executed (as appropriate) using a single
host computer and a single target computer. Test output, compilation
listings, and job logs were captured on magnetic tape and archived at the
AVF, The 1listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at Rational, Santa Clara CA and was comzleted on 17
Augist 1983,

3-5

APPENDIX A

DECLARATION OF CONFORMANCE

Rational has submitted the following Declaration of

Conformance concerning the VAX _VMS compiler, Version
2.0.45.

DECLARATION OF CONFORMANCE

Compiler Implementor: Rational
a2a® validaticn Facility: ASD/SCEL, Wright-Patterscn AFB, OH 45433-65C
RZa Compiler Validation Capability (ATVI) Vers:wcn: 1.9

Base Configuration

Rase Compiler Name: VAX VMS Version: 2.C.4¢%
Hcst Architecture: R10C0® Operating System: D_1C_9_10wps
Target Architeczure: DEZ VAX Cperating Sfyster S 4.¢

CEC VAX 11/7:Z2
Implementor's Declaration

I, the undersigned, represenang Rauonal, have implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler bisted in this declaranon. 1 declare that Ranonal is the owner of record of
the Ada language compiler listed above and. as such, is responsible for maintaining said compiler in conformarnce to
ANSINTL-STD-181iSA. All ceruficates and regiswrauons for the Adz language compiler listed in this declaration
shall be made only in the owner's corporate name.

! ¢ . Dace: 2)(/&1855
walter A. Wallach, Manager, ?cf:ware Test

‘/

Owner’s Declaration

I. the undersigned, represenung Rational, take full responsibiiity for the implementation and maintenance of the Adz
compiler listed above, and agree to the public disclosure of the final Validation Summary Repont. 1 further agree to

continue o comply with the Ada rademark policy, as defined by the Ada Joint Program Office. I declare that all of
the Ada language compilers listed, and their hosttarget performance are in compliance with the Ada Language

Standard ANSI/MIL-STD-1815A.

O;aaL O@dj/// cece 8/18/55

Wa.lagch, Manager /c Test
/

s

2 2435 & regustered trademark of the Uruted Sutes Government (Ada Joun: Program Office.
R X015 the registered vademark of Ravonal.

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the VAX VMS compiler, Version 2.0.45, are described in the following
sections, taken from Appendix F of the Ada Standard.
Implementation-specific portions of the package STANDARD are also included
in this appendix.

package STANDARD is

tvpe INTEGER is range -2147483648 .. 214T7U8B3647T;
tvpe SHORT INTEGER is range -32768 .. 32767;
tyoe SHORT_SHORT_INTEGER is range -128 .. 127;

type FLOAT is digits 6 range -1.70141173319264E+38 .. 1.70141173319264E+38;

type LONG_FLOAT is digits 9 range

-1.70141183460469E+38 .. 1.70141183460469E+38;

type DURATION is delta 6.10351562500000E-05 range

1.31072000000000E+05 .. 1.31071999938965E+05;

end STANDARD;

Appenduix F for the Ratonal Vax/VMS Cross Compiler

1. Implementation-Dependent Pragmas
The Vax/VMS Cross-Compiler supports pragmas for application software development in addition to those listed in
Appendix B of the Reference Manual for the Ada Programming Language. They are described below, along with

addiuonal clanificanons and restnctons for pragmas defined in Appendix B of the Reference Manual for the Ada
Programrung Language.

1.1. Pragma Main

A parameterless library unit procedure can be designated as a main program by including a pragma Ma in at the end

of the specificanon or body of the unit. This pragma causes the linker < run and create an executable program when

the body of this subprogram is coded. Before a unit having a pragma Ma in can be coded, all units in the transitive

with-closure of the unit must be coded.

The pragma Main has arguments that can control the way the linker builds the executable program.

. Stack_Size: This argument takes a static-integer-expression as parameter; it specifies the size, in bytes, of
the main task stack. If not specified, the default value is 4K bytes. The value must lie in the range 256 ..

231,

. Heap_Size: This argument takes a static-integer-expression as parameter, it specifies the size, in bytes, of
the heap. The value must lie in the range 0.. 2%'-1. If not specified, the default value of the Heap_Size is
64K bytes.

The complete syntax for this pragma is:

pragma_main ::= PRAGMA MAIN
((main_option [, main option])] :

main_option ::= STACK SI2E => static_integer_expression |
HEAP_SIZE => static_integer_expression

The pragma Ma in must appear immediatslv following the declaration or body of a parameteriess library unit
procedure.

1.2. Pragma Nickname

The pragma Nickname can be used w give a unique string name to a procedure or function besides its normal Ada
name. It can ve used to disambiguate overioaded procedures or functions in the importing and exporting pragmas

defined in subsequent sectons.

The pragma Nickname must appear immediately following the declaration for which it is to provide a nickname.
It has a single argument, the nickname, which must be a string constant.

For example (pragma Import_Function is described fully in a subsequent section):

function Cat (L: Integer; R: String) return String;
pragma Nickname ("Int-Str-Cat");

functicn Cat (L: String; R: Integer) return String;

B-2

pragma Nickname ("Str-Int-Cat");
pragma Interface (Assembly, Cat):

pragma Import_Function (Cat, Nickname => "Int-Str-Cat",
External => "CATSINT_STR_CONCAT",
Mechanism => (Value, Reference));

pragma Import_Function (Cat, Nickname => "Str-In:-Cat",
External => 'CATSSTR_INT_CONCAT",
Mechanism => (Reference, Value)):

1.3. Importing and Exporting Subprograms

A subprogram written in another language (typically, assembly language) can be called from an Ada program if it is
declared with a pragma Interface. The rules for placement of pragma Interface are given in section 13.9 of
the Reference Manual for the Ada Programming Language. Every interfaced subprogram must have an Vax/VMS
cross-compiler defined importing pragma, either the pragma Import_Procedure or the pragma
Import_Function. These pragmas are used 1o declare the external name of the subprogram and the parameter
passing mechanism for the subprogram call.

A subprogram written in Ada can be made accessible to code written in another language by using an Vax/VMS

cross-compiler defined exporting pragma. The effect of such a pragma is to given the subprogram a defined
symbolic name that the linker can use when resolving references between object modules.

The importing and exporting pragmas can only be applied to nongeneric procedures and functions.

13.1. Subprogram Importing Pragmas

The pragmas Import_Procedure, Import_Function,and Import_Valued Procedure are used for

importing subprograms. A pragma Interface must precede one of these import pragmas, otherwise, the
placement rules for these pragmas are identical to those of the pragma Interface.

The importing pragmas have the form:

importing_pragma ::= PRAGMA importing_type

([INTERNAL =>] internal name

[, [EXTERNAL =>] exterrnal name]

([, [PARAMETER_TYPES =>] parameter_types]
{ , [RESULT_TYPE =>] type mark] |
[, NICKNAME => string literal]]
(, [MECHANISM =>] mechanisms]) ;
importing_type ::= IMPORT_PROCEDURE | IMPORT_FUNCTION |

IMPORT_VALUED_ PROCEDURE

internal_name ::= identifier |
string literal -~ An operator designator
exterrnal name ::= identifier | string literal
parameter_types = (NULL) | (type _mark { , type mark })
B-3

f

mechanisms ::= mechanism name |
(mechanism name { , mechanism name |})
mechanism name ::= VALUE | REFERENCE | DESCRIPTOR (§)

The internal name is the Ada name of the subprogram being interfaced. If there is more than one subprogram in the
declarative region, preceeding the importing pragma, then the correct subprogram must be identfied using either the
argument types (and result type, if a function) or specifying the nickname.

If used to disambiguate an overloaded internal name, the value of the Parameter_Types argument consists of a
list of type or subtype names, not names of parameters. Each one corresponds, positionally, to a formal parameter in
the subprogram’s declaration. If the subprogram has no parameters then the list consists of the single word nu 1.
In the case of a function, the value of the Result_Type argument is the name of the type or subtype returned by
the function.

The external designator, specified with the Ext ernal parameter, is a character string which is an identifier suitable
for the Vax/VMS assembler. If the external designator is not specified, then the internal name is used.

The argument Mechanism is required if the subprogram has any parameters. It specifies in a parenthesized list the
passing mechanism for each parameter to be passed. The passing mechanism may be one of Value, Reference,
or Descriptor (S). For functions, it is not possible to specify the passing mechanism of the function result; the
standard Ada mechanism for the given type of the function result must be used by the interfaced subprogram. If
there is one or more parameters, and they all use the same passing mechanism, then an altermate form for the
Mechanism parameter may be used: Instead of a parenthesized list with an element for each parameter, the single
mechanism name (not parenthesized) may be used instead.

Examples:

procedure Locate (Source: in String;
Target: in String;
Index: out Natural)};

pragma Interface (Assembler, Locate);

pragma Import Procedure
(Locate, "STRSLOCATE",
Parameter Types => (String, String, Natural),
Mechanism => (Reference, Reference, Value));

function Pwr (I: Integer; N: Integer) return Float:
function Pwr (F: Float: N: Integer) return Float;

pragma Interface (Assembler, Pwr);
pragma Import_Function
(Internal => Pwr,
Parameter_Types => (Integer, Integer),
Result Type => Float,
Mechanism => Value,
External => "MATHSPWR_OF_INTEGER")
pragma Import_Function
(Internal => Pwr,
Parameter Types => (Float, Integer),
Result_Type => Float,
Mechanism => Value,
External => "MATHSPWR_OF_FLOAT"):;

w—

1.3.2. Subprogram Exporting Pragmas

The pragmas Export_Procedure and Export_Function are used 1o make an Ada subprogram available ©o
external code in a different language by defining a global symbolic name that the linker can use.

An exporting pragma can be given only for subprograms which are library units, or are declared in the outermost
declarative part of a library package. An exporting pragma can be placed after a subprogram body only if the
subprogram either doesn’t have a separate specification or the specification is in the same declarative part as the
body. Thus, an exporting pragma can’t be applied to the body of a library subprogram which has a separate
specification. An exparting pragma cannot be given for a generic library subprogram, or for a subprogram declared
in a generic library package.

These pragmas have similar arguments to the importing pragmas, except that it is not possible to specify the
parameter passing mechanism. The standard Ada parameter passing mechanisms are choosen. For descriptions of
the pragma’s arguments, Internal, External, Parameter Types, Result_Type, and Nickname, see
the preceeding section on the importing pragmas.

The full syntax of the pragmas for exporung subprograms is:

exporting_pragma ::= PRAGMA exporting_type
([INTERNAL =>] internal name
[, [EXTERNAL =>] external_name)
[[, [PARAMETER _TYPES =>] parameter types]
(, [RESULT_TYPE =>] type _mark] |
{ , NICKNAME => string literal]]) ;

exporting type ::~= EXPORT_PROCEDURE | EXPORT_FUNCTION
internal name 1i= identifier |
string literal -~ An operator designator
external name ::= identifier | string literal
parameter_types s:= (NULL) | (type_mark { , type_mark })
Examples:

procedure Matrix Multiply
(A, B: in Matrix; C: out Matrix);

pragma Export_ Procedure (Matrix Multiply):
- zxtul:};a]. name is the string "Matrix Multiply"”
-y
functi;:‘; 8in (R: Radians) return Float;
pragma . Export_Function
* * (Internal => Sin,

External => “SIN_RADIANS");

-- External name is the string "SIN_RADIANS®

1.4. Importing and Exporting Objects
Objects can be imparted or exported from an Ada unit with the pragmas Import_Object and

Export_Object. The pragma Import_Object makes an Ada name reference storage declared and allocated
in some extemal (non-Ada) object module. The pragma Export_ObJject provides an object declared within an

B-5

Ada unit with an externally available symbolic name that the linker can use 0 put Wogether a program with modules
written in some other language. In any case, it is the responsibility of the programmer (0 insure that the internal
structure of the object is such that the ron-Ada code or dawa layout matches; such checks cannot be performed by the
cross-compiler,

The object to be imported or exported must be a variable declared at the outermost level of a library package
specification or body.

The size of the object must be static, thus the type of the object must be one of:

. A scalar type (or subtype).

. An array subtype with static index constraines whose component size is static.

. A simple record type or subtype.

Objects of a private or limited private type can be imported or exported only into the package that declares the type.
Imported objects cannot have an initial value, and thus cannot be:

. constant.

« Anaccess type.

. A 1ask rype.

. A record type with discriminants, or with components with default initial expressions, or with components
which are access types or task types.

Finally, the object must not be in a generic unit.
The external name specified must be suitable for an identifier in the assembler.
The full syntax for the pragmas Import_Object and Export_Object is:

object_pragma ::= PRAGMA object_ pragma_type
([INTERNAL =>] identifier
[» [EXTERNAL =>] string_literal])

object_pragma_ type ::= IMPORT_OBJECT | EXPORT_OBJECT

1.5. Pragma Suppress_All
Thus pragma, is equivalent 1o the following sequence of pragmas:

pragma Suppress (Access_Check);
pragma Suppress (Discriminant_Check):
pragma Suppress (Division_Check);
pragma Suppress (Elaboration_Check);
pragma Suppress (Index_Check):

pragma Suppress (Length_Check]);
pragma Suppress (Overflcw_Check):
pragma Suppress (Range_Check);

pragma Suppress (Storage_Check):

B-6

Note that, just as pragma Suppress, the Suppress_All pragma cannot prevent the raising of certain
exceptions. For example, numeric overflow or dividing by zero is detected by the hardware, which results in the
predefined exception Numeric_Error being raised. Refer to Chapter 7, “Run-Time Organization”, for more
information.

The pragma Suppress_All must appear immediately within a declarative part.

2. Implementation-Dependent Attributes

There are no implementaton-dependent atributes.

3. Package System
package System is
type Name is (Dec_Vax):

System Name : constant Name := Dec_Vax:
Storage_Unit : constant := 8;
Memory_Size : constant := 2 ** 3] - 1;

Min Int : constant := =-(2 ** 31);
Max Int : constant := +(2 ** 31) - 1;

Max_Digits : constant := 9;

Max Mantissa : constant := 31;
Fine_Delta : constant := 2.0 ** (-31);
Tick : constant := 1.0E-2;

subtype Priority is Integer range 1 .. 254;
type Address is private:

function "+" (Left : Address; Right : Integer) return Address;
function "+™ (Left : Integer; Right : Address) return Address:
function "-" (Left : Address; Right : Address) return Integer:;
function "-" (Left : Address; Right : Integer) return Address;

function "<" (Left, Right : Address) return Boolean;
function "<=* (Left, Right : Address) return Boolean:
function ®*>" (Left, Right : Address) return Boolean:
function ">=" (Left, Right : Address) return Boolean;

Address_Zero : constant Address;

gereric
type Target is private;
function Fetch From_Address (A : Address) return Target;

generic
type Target is private;
procedure Assign_To_Address (A : Address; T : Target):

type Type_Class is (Type_Class_Enumeration, Type C.ass_Integer,
Type_Class_Fixed_Point, Type_Class_Floating_ Point,
Type_Class_Array, Type_Class Record,
Type_Class_Access,
Type_Class_Task, Type_Class_Adiress):
type F_Float is digits 6;
type D_Float is digits 9;

type Ast_Handler is limited private;
No_Ast_Handler : constant Ast_Handler;

type Bit_Array is array (Integer range <>) of Boolean;
oragma Pack (Bit_Array);

subtype Bit_ Array 8 is Bit_Array (0 .. 7);

subtype Bit_Array_ 16 is Bit_Array (0 .. 15);
subtype Bit_Array 32 is Bit_Array (0 .. 31):
subtype Bit_Array_64 is Bit_Array (0 .. 63);

type Unsigned Byte is range 0 .. 255;

function "not" (Left : Unsigned_Byte) return Unsigrned Byte:

function "and"” (Left, Right : Unsigned_ Byte) return Unsigned_Byte:
function "or" (Left, Right : Unsigned Byte) return Unsigned_Byte:
function "xor"™ (Left, Right : Unsigned Byte) return Unsigned Byte;

function To_Unsigned Byte (Left : Bit_Array 8) return Unsigned Byte:
function To_Bit_Array 8 (Left : Unsigned Byte) return Bit_Array_ 8;

type Unsigned Byte Array is array (Integer range <>} of Unsigned Byte;
pragma Pack (Unsigned_Byte Array):;

type Unsigned Word is range 0 .. 65535;

function "not" (Left : Unsigned_Word) return Unsigned Word:

function "and" (Left, Right : Unsigned_Word) return Unsigned_Word:
function "or" (Left, Right : Unsigned Word) return Unsigned Word;
function "xor™ (Left, Right : Unsigned Word) return Unsigned Word:

function To_Unsigned Word (Left : Bit_ Array 16) return Unsigned_Word;
function To_Bit_Array 16 (Left : Unsigned_Word) return Bit_Array_ 16:

type Unsigned Word_Array is array (Integer range <>) of Unsigned_Word;
pragma Pack (Unsigned_Word Array):

type Unsigned_Longword is range Min_Int .. Max_Int;

function "not" (Left : Unsigned Longword) return Unsigned_Longword;

function "and" (lLeft, Right : Unsigned_Longword) return Unsigned_Longword;
function "or" (Left, Right : Unsigned_Longword) return Unsigned_Longword:
function "xor" (Left, Right : Unsigned_Longword) return Unsigned_ Longword;

function To_Unsigned_Longword
(Left : Bit_Array 32) return Unsigned_Longword:
function To_Bit_Array_ 32 (Left : Unsigned_Longword) return Bit_Array_32;

B-8

type Unsigned_Longword_Array is
array (Integer range <>) of Unsigned_Longword:

type Unsigned Quadword is
record
L0 : Unsigned Longword;
Ll : Unsigned_Longwcrd;
end record;

function "not"™ (Left : Unsigned_Quadword) return Unsigned Quadword:

function "and” (Left, Right : Unsigned_Quadword) return Unsigned_Quadword:
function "or™ (Left, Right : Unsigned_Quadword) return Unsigned Quadword;
function "xor" (Left, Right : Unsigned Quadword) return Unsigned_Quadword;

function To_Unsigned Quadword
(Left : Bit_Array_64) return Unsigned Quadword:
function To_Bit_Array_64 (Left : Unsigned Quadword) return Bit_Array 64;

type Unsigned_Quadword Array is
array (Integer range <>) of Unsigned_Quadword;

function To_Address (X : Integer) return Address;
function To_Address (X : Unsigned Longword) return Address;

function To_Integer (X : Address) return Integer:;
function To_Unsigned_Longword (X : Address) return Unsigned Longword;

subtype Unsigned_1l is Unsigned Longword range 0 .. 2 ** 1 - 1;
subtype Unsigned 2 is Unsigned_Longword range 0 .. 2 ** 2 - 1;
subtype Unsigned 3 is Unsigned_Longword range 0 .. 2 ** 3 - 1;
subtype Unsigned 4 is Unsigned_lLongword range 0 .. 2 ** 4 - 1;
subtype Unsigned_5 is Unsigned_Longword range 0 .. 2 ** 5 ~ 1;
subtype Unsigned_6 is Unsigned Longword range 0 .. 2 ** 6 - 1;
subtype Unsigned_ 7 is Unsigned_Longword range 0 .. 2 #** 7 - 1;
subtype Unsigned_8 is Unsigned Longword range 0 .. 2 ** 8 - 1;
subtype Unsigned 9 is Unsigned Longword range 0 .. 2 ** 9 - 1;
subtype Unsigned_10 is Unsigned Longword range ¢ .. 2 ** 10 -~ 1;
subtype Unsigned_11 is Unsigned_Longword range 0 .. 2 ** 11 - 1;
subtype Unsigned_12 is Unsigned Longword range 0 .. 2 #** 12 - 1;
subtype Unsigned 13 is Unsigned Longword range 0 .. 2 ** 13 - 1;
subtype Unsigned_14 is Unsigned Longword range 0 .. 2 ** 14 - 1;
subtype Unsigned 15 is Unsigned Longword range 0 .. 2 ** 15 - 1;
subtype Unsigned_16 is Unsigned Longword range 0 .. 2 ** 16 - 1;
subtype Uﬂiiguod_l? is Unsigned Longword range 0 .. 2 ** 17 - 1;
subtype Unsigned_18 is Unsigned_Longword range 0 .. 2 ** 18 - 1;
subtype Unsigned_19 is Unsigned Longword range 0 .. 2 ** 19 - 1;
subtype Unsigned_20 is Unsigned Longword range 0 .. 2 ** 20 - 1;
subtype Unsigned_21 is Unsigned lLongword range 0 .. 2 ** 21 - 1;
subtype Unsigned 22 is Unsigned Longword range 0 .. 2 ** 22 - 1;
subtype Unsigned_23 is Unsigned_Longword range 0 .. 2 ** 23 - 1:
subtype Unsigned 24 is Unsigned_Longword range 0 .. 2 ** 24 - 1;
subtype Unsigned 25 is Unsigned_Longword range 0 .. 2 ** 25 - 1;
subtype Unsigned 26 is Unsigned Longword range 0 .. 2 ** 26 - 1;
subtype Unsigned_27 is Unsigned_Longword range 0 .. 2 ** 27 - 1;
subtype Unsigned_28 is Unsigned_Longword range 0 .. 2 ** 28 - 1;
subtype Unsigned_29 is Unsigned_Longword range 0 .. 2 ** 29 - 1;

B-9

subtype Unsigned_30 is Unsigned Longword range 0 .. 2 ** 30 - 1;
subtype Unsigned_31 is Unsigned_Longword range 0 .. 2 ** 31 - 1;

private

end S;stem:
4. Restrictions on Representation Clauses

4.1. Length clauses

Size specifications are allowed only on discrete types that are not derived types. There are no restrictions on
specifications of collection size or task activation size. Small may be specified for a fixed point type so long as it is
a power of two that does not exceed the given delta and still permits representation of all necessary values, and so
long as the fixed point type is not a derived type.

4.2. Enumeration Representation Clauses

Enumeration representation clauses are not permitted on derived enumeration types.

4.3. Record Representation Clauses

A record field can consist of any number of bits between 1 and 32 inclusive; otherwise it must be an integral number
of 8-bit bytes. There are no other restrictions on record field specifications.

4.4. Address Clauses

Address clauses are not supported.

5. Names denoting implementation-dependent components

There are no implementation dependent components that can be named in representation clauses.

6. Interpretation of expressions that appear in address clauses

Address clauses are not supported.

7. Unchecked conversion

The target type of an unchecked conversion cannot be an unconstrained array type or an unconstrained discriminated
type.

[rm——

8. Implementation dependent characteristics of the input output packages

8.1. The generic packages Sequential_ ioandDirect_Io
Direct_Io may only be instantiated with constrained types.

The implementation of Sequential_Io creates VMS RMS variable-length-record record-oriented files for
unconstrained types and fixed-length-record record-oriented files for constrained types. Direct_Io always
creates fixed-length-record record-oriented files. All files are created with the carriage return carriage control
atribute and use the VMS RMS sequential organization. There is a one-to-one correspondence between internal file

elements and external file records. Thus, Element_Type’ size is limited to 32767 bytes by the VMS RMS 1/O
system. The implementation can read files in these formats only.

The int zer type Direct_Io.Count is defined to have an upper bound of Integer’ last. However, because
of limitations of the VMS RMS [/O system, the actual limitis 512 * integer’last /
element_type’size.

The Form parameter is ignored on Open and Create calls.
Input and output files are not buffered beyond that provided by VMS RMS.
The implementation does not support having the same external file open for both input and output via two different

internal files or having the same external file open for writing via two different intemal files. Temporary files are
named, but a single temporary file cannot be shared by two or more different internal files.

Use_Error israised when a Create is anempted with the mode In_File. Read does not perform the exua
I checks that might raise Data_Error for values inappropriate for the element type.

When creating a file, the default protections of the containing directory are used. The implementation does not
examine the previous version of the file to use its protection.

8.2. The package Text_Io

The integer type Text_Io.Count is defined to have an upper bound of 1_000_000_000. However, this isn’t
practical: The VMS RMS 1/O system limits record length to 32767 bytes for disk files and 255 bytes for terminals.
Text_Io.Field has the same range as type Standard.Natural.

The implementation of Text_Io creates VMS RMS variable-length-record record-oriented files with carriage
return carriage control strributes. VMS RMS stream files are not created far output files. In these files, each record
corresponds to ane Text_lo line. A page terminator is represented by an ASCII . FF either as the first character or
the last character of a recard. ASCII.FF characters embedded within records except as the first or last character of
the record are not page terminators. The page terminator at the end of the file is implicit, there is no ASCII.FF in
the file to represent it. Text_Io can read either record-oriented files or stream-oriented files.

For the file Standard_Input, if the logical name ADASINPUT is defined then it is opened, otherwise
SYSSINPUT is opened. If SYSSINPUT isn’t defined (if, for example, the program was spawned by the RUN
command) then NULL: is used. (NULL: is the standard VMS file name for the bit-bucket, when used as an input
file it renzrns end-of-file immediately.)

For the file Standard_Output, if a logical name ADASOUTPUT is defined thea it will be used as the name of the
file to be created, otherwise SYSSOUTPUT is used.

The FORM parameter is ignored on Open and Create calls.

B-11

Output to a terminal is not buffered. Output 1o files is buffered, but as part of (normal or abnormal) program
termination the Ada runtimes call Text_Io in order to flush the buffers of all files so they can be closed without

the loss of information.

The implementation of Text _Io does not support having the same external file open for both input and output via
two different internal files (Text_Io.File_Type) or having the same external file open for writing via two

different intemal files.

When creating a file, the default protections of the containing directory are used. Tex=_Io does not examine the

previous version of the file to use its protection.

9. Standard package

package Standard is

type *Universal Integer* is [universal integer):
type *Universal Real* is (universal reall;
type *Universal Fixed* is (universal fixed]:;

type Boolean is (False, True):

type Integer is range -2147483648 .. 2147483647;
type Short_Short_Integer is range -128 127;
type Short_Integey is range -32768 .. 32767;

type Float is digits 6

range -1.70141173319264E+38 .. !

type Long Float is digits 8

range -1.70141183460469E+38

type Duration is delta 6.10351562500000E-
range -1.31072000000000E+05

=)

05

[

subtype Natural is Integer range 0 .. 2147483647;
subtype Positive is Integer range 1 .. 2147483647;

type String is array (Positive range <>)
pragma Pack (String):

package Ascii is

end Ascii;

Constraint_Error : exception;
Numeric_Error : exception:
Storage_Error : exception;
Tasking_Error : exception;
Program Error : exception;

type Character is

end Standard:;

of Character:

.70141173319264E+38;

.70141183460469E+38;

.31071999938965E+05:;

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in 1its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test 1is run. The values used for this validation are given
below.

Name and Meaning Value

$BIG_ID1 (1..253 => 'A', 254 => '17)
Identifier the size of the
maximum input line 1length with
varying last character.

$BIG_ID2 (1..253 => 'A", 254 => 21')
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3 (1..126 => '"A', 127 => 3¢,
Identifier the size of the 128..254 => 'A')
maximum input line 1length with
varying middle character.

$3IG_ID4 (1..126 => A, 127 => '4+,
Identifier the size of the 128,.254 => 'A')
maximum input line 1length with
varying middle character.

$BIG_INT LIT (1..251 => '0', 252..254 => "298")

An integer 1literal of value 298
with enough leading zeroes so
that it 1is the size of the
maxinum line length.

TEST PARAMETERS

Naze and Meaning

$3IG_REAL LIT
A universal real 1literal of
value 692.0 with enough leading
zerces t2 be the size of the
maximum line lengtn.

$2I5 _STRINGH
A string literal which when
catenated with BIG_STRING2
yields the image of BIG_ID?.

$3IG_STRING2
A string 1literal which when

catenated to the end of
BIG_STRING1 vyields the image of
BIG_ID1.

$3_ANKS

& sejuence of blanks twenty
charasters less than the size
of the maximum line length.

$COUNT_LAST

A universal integer
literal whose value is
TEXT_IO.COUNT'LAST.
$-IZLD_LAST
A universal integer
whose value is

literal
TEXT_IO.FIELD'LAST.

$FILE_NAME.WITH_BAD“CHARS
An external file name that
either contains invalid
characters or 1is too 1long.

$FILE _NAME WITH_WILD_CARD_CHAR
An external file name that
either containg a wild card
character or is too long.

$3REATER_THAN_DURATION
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

Cc-2

(1..248 => '0', 249...254 => "69.0E1™)}

(1..127 => 'A")

(1..126 => A, 127 => "1")

(1..234 => v ")

1000000000

2147483647

BAD CHARACTERS&<>=

WILDCARDS#®

0.0

TEST PARAMETERS

Value

$SREATER _THAN_DURATION BASE_LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

$IT U BGAL _EXTERNAL FILE NAMED
An exte"nal file name which
contains invalid characters.

$ILLEGAL_EXTERNAL _FILE NAME?2

An external file name which
is too long.

$INTEGER_FIRST
A universal integer 1literal

whose value 1s INTEGER'FIRST.

$INTEGER_LAST

X
A universal
whose value 1is

integer 1literal
INTEGER'LAST.

$INTEGER_LAST PLUS 1
A universal integer 1literal
whose value is INTEGER'LAST + 1.

$LESS THAN DURATION
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

LESS_THAN_DURATION BASE FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

$¥AX DIGITS

Maximum digits supported for
floating-point types.

$MAX_IN _LEN
Maximum input line length

permitted by the impliexentation.

$MAX _INT
A universal
whose value is

integer 1literal
SYSTEM.MAX INT.

$MAX_INT_PLUS 1
A universal integer 1literal
whose value is SYSTEM.MAY_INT«+1.

2.0E05

BAD_CHARACTERS&<>=

STRING'{1..100=>"A")&STRING'{1.

&STRING'(1..100=>"A")

-2147483648

21474836U7

2147483648

-2.0E05

2147483647

2147483648

.100=>'A")

TEST PARAMETERS

Name and Meaning

Value

$MAX_LEN_INT_ BASED_LITERAL

A universal integer based
literal whose value 1is 24114
with enough leading zeroes in
the mantissa to be MAX_IN_LEN
long.

$MAX LEN_REAL_BASED LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading zerces 1in the
mantissa to be MAX_IN_LEN long.

$MAX_STRING_LITERAL

A string literal of size
MAX_ IN_LEN, including the quote
characters.
$MIN_INT
A universal integer 1literal
wmase value is SYSTEM.MIN_INT.
$NAME

A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT _INTEGER,
LON3_FLOAT, or LONG_INTEGER.

$NZG_BASED_INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAY_INT.

(1..2 => m2:", 3,.251 => '0',
252..254 =>"11:")

(1..3 => M6, 4,.250 => '0°',
251..254 => "F.E:")

(1 => ey

2..253 => 'A', 254 => 1)

~214748364L8

SHORT SHORT_INTEGER

16#FFFFFFFFFFFFFFFES

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
4da Standard. The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

. B280O3A: A basic declaration (line 36) incorrectly follows a
later declaration.

. E28005C: This test requires that "PRAGMA LIST (ON);" not
appear in a listing that has been suspended by a previous
"PRAGMA LIST (OFF);"; the Ada Standard is not clear on this
point, and the matter will be reviewed by the AJPO.

. C3L400UA: The expression in line 168 yields a value outside
the range of the target type T, but there is nc handler for
CONSTRAINT_ERROR.

. (35502P: The equality operators in lines 62 ané 69 should be
inequality operators.

. A35602C: The assignment in line 17 of the nominal upper
bound of a fixed-point type to an object raises
CONSTRAINT_ERROR, for that value lies outside of the actual
range of the type.

. C35904A: The elaboration of the fixed-point subtype on 1line
28 wrongly raises CONSTRAINT ERROR, because its upper bound
exceeds that of the type.

. C35904B: The subtype declaration that is expectei to raise
CONSTRAINT_ERROR when 1its compatibility is checked against
that of various types passed as actual generic parameters,
may, in fact, raise NUMERIC _ERROR or CONSTRAINT_ERROR for
reasosns not anticipated by the test.

]

C35AJ03E and C35A03R: These tests assume that attribute
'MANTISSA returns O when applied to a fixed-point type with a
nu1ll range, but the Ada Standard does not support this
assumption.

WITHDRAWN TESTS

« £372134: The subtype declaration of SCCNS in line 100 is
incorrectly expected to raise an exception when elaborated.

- 237213J: The agzregate in line 451 incorrectly raises
CONSTRAINT ERROR.

r£37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with
type CONS.

. C38102C: The fixed-point conversion on 1line 23 wrongly
raises CONSTRAINT_ERROR.

CL414024: The attribute 'STORAGE_SIZE is incorrectly applied
to an object of an access type.

C453324: The test expects that either an expression in 1line
52 will raise an exception or else MACHINZ OVERFLOWS is
FALSE. However, an implementation may evaluate the
expression correctly using a type with a wider range than the
base type of the operands, and MACHINE_OVERFLOWS may still be
TRUE.

. CU561UC: The function call of IDENT_INT in lire 15 uses an
argument of the wrong type.

. A74106C, C85018B, C87BOUB, and CC1311B: A boun? specified in
a fixed-point subtype declaration 1lies outside of that
calculated for the base type, raising CONSTRAINT_ERROR.
Errors of this sort occur at lines 37 & 59, 142 & 143, 16 &
48, and 252 & 253 of the four tests, respectively.

. BC3105A: Lines 159 through 168 expect error messages, but
these lines are correct Ada.

raises

. AD1AD1A: The declaration of subtype SIN
st INT'SIZE to

CONSTRAINT _ERROR for implementations which sele
be 16 or greater.

- 3
w

. CE2401H: The record aggregates in lines 105 an4 117 contain
the wrong values.

. CE3208A: This test expects that an attempt to open the
default output file (after it was closed) wit: mode IN_FILE
raises NAME ERROR or USE_ERROR; by Commentary AI-00048,
MODE_ERROR should be raised.

